
Dr. Riaz Hasan
Department of Chemistry
DSPMUniversity, Ranchi, JH-India

Ideal Gas Equation-2

Variable-1, 2, 3 and 3' are known then Variable-4 can be calculated

$\Rightarrow R = \frac{pV}{nT}$

Calculation

Value of R for one mole of an ideal gas

$$R = \frac{(10^{5} \text{ Pa})(22.71 \times 10^{-3} \text{m}^{3})}{(1 \text{ mol})(273.15 \text{ K})}$$

$$= 8.314 \text{ Pa m}^{3} \text{ K}^{-1} \text{ mol}^{-1}$$

$$= 8.314 \text{ 10}^{-2} \text{ bar L K}^{-1} \text{ mol}^{-1}$$

$$= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

Ideal gas equation is a relation between four variables and it describes the state of any gas, therefore, it is also called equation of state

> Pascal x m³= joules **1 Bar =100000Pa=10⁵Pa** 1 Pa=1/100000=1x10⁻⁵ bar

In class you were asked to prove that **Pascal** X meter3 = **Joules**. ... Recalling Einstein's equation $E = m c2 \rightarrow Since$ energy is measured in **Joules**, m stands for mass (kg) and c is the speed of light (m/sec), then a **Joule** must be the same thing as kg-m2/sec2.